Search results for "TORC1 Pathway"

showing 3 items of 3 documents

The landscape of epilepsy-related GATOR1 variants

2019

Purpose:\ud \ud To define the phenotypic and mutational spectrum of epilepsies related to DEPDC5, NPRL2 and NPRL3 genes encoding the GATOR1 complex, a negative regulator of the mTORC1 pathway.\ud \ud Methods:\ud \ud We analyzed clinical and genetic data of 73 novel probands (familial and sporadic) with epilepsy-related variants in GATOR1-encoding genes and proposed new guidelines for clinical interpretation of GATOR1 variants.\ud \ud Results:\ud \ud The GATOR1 seizure phenotype consisted mostly in focal seizures (e.g., hypermotor or frontal lobe seizures in 50%), with a mean age at onset of 4.4 years, often sleep-related and drug-resistant (54%), and associated with focal cortical dysplasia…

Male0301 basic medicineProbandDEPDC5SUDEP030105 genetics & heredityBioinformaticsLoss of Function Mutation/geneticsEpilepsyINDEL MutationLoss of Function MutationmTORC1 pathwayGenetics(clinical)ChildGenetics (clinical)Multiprotein Complexes/geneticsBrugada SyndromeDNA Copy Number VariationBrugada syndromeINDEL Mutation/geneticsGTPase-Activating ProteinsNPRL3SeizureDEPDC5PhenotypePedigree3. Good healthBrugada Syndrome/geneticsChild PreschoolFemaleHumanSignal TransductionDNA Copy Number VariationsAdolescentSeizures/complicationsMechanistic Target of Rapamycin Complex 1/geneticsDNA Copy Number Variations/geneticsMechanistic Target of Rapamycin Complex 1Tumor Suppressor Proteins/geneticsArticleFocal cortical dysplasia03 medical and health sciencesSeizuresGTPase-Activating Proteins/geneticsmedicineHumansGenetic Predisposition to DiseaseDEPDC5; Focal cortical dysplasia; Genetic focal epilepsy; mTORC1 pathway; SUDEPGenetic focal epilepsyEpilepsy/complicationsRepressor Proteins/geneticsEpilepsybusiness.industryGTPase-Activating ProteinTumor Suppressor ProteinsInfant NewbornCorrectionInfantRepressor ProteinCortical dysplasiamedicine.diseaseddc:616.8Repressor Proteins030104 developmental biologyFrontal lobe seizures[SDV.GEN.GH]Life Sciences [q-bio]/Genetics/Human geneticsMultiprotein ComplexesMultiprotein ComplexeSignal Transduction/geneticsHuman medicinebusiness
researchProduct

Yeast thioredoxin reductase Trr1p controls TORC1-regulated processes

2018

The thioredoxin system plays a predominant role in the control of cellular redox status. Thioredoxin reductase fuels the system with reducing power in the form of NADPH. The TORC1 complex promotes growth and protein synthesis when nutrients, particularly amino acids, are abundant. It also represses catabolic processes, like autophagy, which are activated during starvation. We analyzed the impact of yeast cytosolic thioredoxin reductase TRR1 deletion under different environmental conditions. It shortens chronological life span and reduces growth in grape juice fermentation. TRR1 deletion has a global impact on metabolism during fermentation. As expected, it reduces oxidative stress tolerance…

0301 basic medicineThioredoxin Reductase 1Estrès oxidatiuThioredoxin reductaseScienceMicrobiologiaMechanistic Target of Rapamycin Complex 1Grape Juice FermentationArticleAntioxidants03 medical and health scienceschemistry.chemical_compoundTORC1 PathwayYeastsAmino AcidsMultidisciplinary030102 biochemistry & molecular biologyKinaseAutophagyChronological Life SpanQFungal geneticsRGlutathioneMetabolismTORC1 ComplexThioredoxin SystemYeastCell biology030104 developmental biologychemistryMedicineThioredoxinGene DeletionSignal TransductionScientific Reports
researchProduct

Role of saccharomyces cerevisiae nutrient signaling pathways during winemaking: a phenomics approach

2020

The ability of the yeast Saccharomyces cerevisiae to adapt to the changing environment of industrial processes lies in the activation and coordination of many molecular pathways. The most relevant ones are nutrient signaling pathways because they control growth and stress response mechanisms as a result of nutrient availability or scarcity and, therefore, leave an ample margin to improve yeast biotechnological performance. A standardized grape juice fermentation assay allowed the analysis of mutants for different elements of many nutrient signaling pathways under different conditions (low/high nitrogen and different oxygenation levels) to allow genetic-environment interactions to be analyze…

0301 basic medicineHistologylcsh:BiotechnologySaccharomyces cerevisiaeBiomedical EngineeringWineBioengineering02 engineering and technologySaccharomyces cerevisiaeNutrient signaling03 medical and health scienceslcsh:TP248.13-248.65PKARas2wineTranscription factorWinemaking2. Zero hungerFermentation in winemakingchemistry.chemical_classificationGln3biologynutrient signaling021001 nanoscience & nanotechnologybiology.organism_classificationYeast3. Good health030104 developmental biologyEnzymeBiochemistrychemistrySnf1 kinase[SDE]Environmental SciencesFermentation0210 nano-technologyglucose repressionTORC1 pathwayBiotechnology
researchProduct